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Quantitative measures of fidelity of model simulations are essential for improving the 
usage and acceptability of model forecasts for real-world applications 

Characterization of accuracy and uncertainty in model predictions - to be used as a 
benchmark for future model enhancements

 Motivation
Need formal evaluation 

procedures to improve the 
“observability” of LSM 

processes

Need a general benchmarking framework 
capable of capturing useful modes of variability 
of LSMs through a range of performance metrics 

is necessary for further advancing the 
performance and predictability of models
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connection between hydrology and the rest of the climate
system are being developed just as society’s needs for
improved water management and hazards prediction
are becoming critical. The application of new ideas and
techniques to the difficult hydrologic problems of the
future will require a carefully formulated plan of attack.

Water at the land surface is a vital resource, both
for human needs and for natural ecosystems. Society’s
growing water resource needs include hazard mitiga-
tion (floods, droughts, and landslides), agriculture and
food production, human health, municipal and indus-
trial supply, environmental quality, and sustainable de-
velopment in a changing global environment.
Desertification and drought are problems of global di-
mension that affect more than 900 million people in
100 countries. Irrigation already accounts for more
than 70% of freshwater withdrawn from lakes, rivers,
and groundwater aquifers, and perhaps 80% of the
additional food supplies required to feed the world’s
population in the next 30 years will depend on irriga-
tion (UN-SWI 1997). Today, about one-third of
world’s population live in countries that are experienc-
ing moderate to high water stress, that is, renewable
freshwater availability is below 1700 cubic meters per
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ABSTRACT

Hydrologic research at the interface between the atmosphere and land surface is undergoing a dramatic change in
focus, driven by new societal priorities, emerging technologies, and better understanding of the earth system. In this
paper an agenda for land surface hydrology research is proposed in order to open the debate for more comprehensive
prioritization of science and application activities in the hydrologic sciences. Sets of priority science questions are posed
and research strategies for achieving progress are identified. The proposed research agenda is also coupled with ongo-
ing international data collection programs. The driving science questions and related research agenda lead to a call for
the second International Hydrologic Decade. This activity will help to ensure that hydrology starts the new millennium
as a coherent and vital discipline.

1. Background

Hydrologists are facing important, even fundamen-
tal, changes in the direction of their science. New tools,
nontraditional datasets, and a better understanding of the

Entekhabi et al., BAMS (1999)

van den Hurk et al., BAMS (2011)



MDF - the paradigm for combining 
information from models and data 

Use the information from data to help to 
formulation, characterization and evaluation 
of  models in a structured manner 

MDF and Benchmarking are two of the core 
themes of the GEWEX GLASS community 

A comprehensive evaluation and 
benchmarking framework is essential for 
enabling the MDF concept

 Model-Data-Fusion (MDF)

Williams et al., Biogeosciences (2009)
1342 M. Williams et al.: Improving land surface models with FLUXNET data
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Figure 1 The multi-stage process for model-data fusion: a conceptual diagram showing the main steps (and the 

iterative nature of these steps) involved in a comprehensive data-model fusion. Fig. 1. The multi-stage process for model-data fusion: a conceptual
diagram showing the main steps (and the iterative nature of these
steps) involved in a comprehensive data-model fusion.

1 Introduction

Land surface models are important tools for understanding
and predicting mass and energy exchange between the ter-
restrial biosphere and atmosphere. A land surface model
(LSM) is a typical and critical component of larger domain
models, which are aimed at global integration, for example
global carbon cycle models and prognostic global climate
models. These integrated models are key tools for predict-
ing the likely future states of the Earth system under anthro-
pogenic forcing (IPCC, 2007), and for assessing feedbacks
with, and impacts on, the biosphere (MEA, 2005). Land sur-
face models represent the key processes regulating energy
and matter exchange – photosynthesis, respiration, evapo-
transpiration (Bonan, 1995; Foley et al., 1996; Williams et
al., 1996; Sellers et al., 1997), and their coupling. These
processes are sensitive to environmental drivers on a range
of timescales, for example, responding to diurnal changes
in insolation, and seasonal shifts in temperature and precip-
itation. Land surface processes influence the climate sys-
tem, through their control of energy balance and greenhouse
gas exchanges. Forecasts of global terrestrial C dynamics
that rely on LSMs show significant variability over decadal
timescales (Friedlingstein et al., 2006), especially when cou-
pled to climate, indicating that major uncertainties remain
in the representation of critical ecosystem processes and cli-
mate feedbacks within global models.
In recent years the widespread use of the eddy covari-

ance (EC) methodology has led to a large increase in data
on terrestrial land surface exchanges (Baldocchi et al., 2001).
FLUXNET is an international network of EC sites with data
processed according to standardized protocols (Papale et al.,
2006). The EC time-series data from FLUXNET provide rich
insights into exchanges of water, energy and CO2 across a

range of biomes and timescales. While LSM forward runs
are commonly compared with EC data, there is a grow-
ing consensus that models must be better constrained with
such data to address process uncertainty (Bonan, 2008). A
stronger link between models and observations is needed to
identify poorly represented or missing processes, and to pro-
vide confidence intervals on model parameter estimates and
forecasts.
New methods are becoming available to assist data anal-

ysis and generate links to models, based on the concept of
model-data fusion, MDF (Raupach et al., 2005). MDF en-
compasses a range of procedures for combining a set or sets
of observations and a model, while quantitatively incorporat-
ing the uncertainties of both. MDF is used to estimate model
states and/or parameters, and their respective uncertainties.
The objective of this paper is to provide guidance to the

LSM community on how to make better use of eddy covari-
ance data, particularly via MDF. We first outline the philo-
sophical principles behind model-data fusion for model im-
provement. We then discuss the structure of typical land sur-
face models and how they are parameterised. Next we de-
tail FLUXNET data availability and quality, specifically in
the context of land surface models. We discuss approaches
for model and data evaluation, focussing on new techniques
using time series and spatial analyses. Finally we discuss
formal model-data fusion and highlight the need for multiple
constraints in model evaluation and improvement, and effec-
tive assessment of model and data errors. We conclude with
a set of challenges for the LSM and MDF communities.

2 The philosophy of model-data fusion for model
improvement

Model calibration, evaluation, testing, and structural im-
provement (re-formulation) are all key aspects of model-data
fusion; in other words, MDF is not simply tuning model pa-
rameters to yield model predictions that match the calibra-
tion data. Rather, it is a multi-stage process (Fig. 1). At
each of these stages, there is interplay between data, model
structure, and modeller. The process details depends some-
what on whether the problem is focussed on state estimation
of the system, or on parameter estimation of the model. In
both cases a rigorous characterization of the model structure
through consistency checks and testing sensitivity to param-
eters and drivers, in the same way as in classical forward
modelling approaches, is still a prerequisite for a meaning-
ful data-model fusion. This model characterization also con-
stitutes the baseline against which any improvements and
reductions of uncertainties can be judged. If state estima-
tion is the goal, then model states are adjusted to generate
closer agreement with the observations. Further analysis can
make use of these state adjustments to identify poorly rep-
resented processes and their timings. It is important to en-
sure that state adjustments are consistent with all independent

Biogeosciences, 6, 1341–1359, 2009 www.biogeosciences.net/6/1341/2009/
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 Definitions
LVT functions both as a verification and 
benchmarking environment

Evaluation - model outputs are compared to observations to 
derive an error measure  

Comparison - model is not just compared to observations, 
but also to other models  

Benchmarking - performance expectation defined a priori source: Best et al. (2015)



 Comparisons (MIPs ..)

…….

…….
…….

Identifies metrics for which one model performs better than another, or 
where errors in multiple models are systematic 

Indicates where performance improvements are possible/not possible 
relative to other models 

Too much reliance on model comparisons - models may end up being 
developed too similar to each other



Simply comparing models and observations – canonical “evaluation” – can’t tell us whether any of the 
models are doing a good job 

Benchmarking involves defining expectations of performance in any metric of interest a priori – before 
running model. Options include: 

previous model version (weak – both models could be poor) 

fit for a particular application (stronger / useful – can tell us if a model is “good enough”) 

effectively utilizes available information (strong – can give us an objective definition of whether a model 
is “good”) - defines a priori expectations based on the complexity of the model and the amount of 
information given to it. 

 Benchmarking

source: Gab Abramowitz

We would typically accept this as a good 
simulation (good correlation visually) 

Benchmarking will reveal that this is in 
fact a poor simulation



How well should we expect a LSM to predict latent heat (Qle) flux at Amplero site? 

1. Take several (19) flux tower sites other than Amplero 

2. Train a linear regression between downward shortwave radiation and Qle 

3. Use these regression parameters to predict Qle at Amplero using site 
meteorology

 Benchmarking example

This will tell us:  

The extent to which Qle is predictable 
from SWdown alone.  

How predictable Qle is at Amplero site - 
is it unusually difficult?

source: Gab Abramowitz
  Even the 1-variable regression beats the model!



 LVT - original structure

LIS was/is being used in many different 
configurations (557, NCEP, NOHRSC, CRREL, 
NRL, NLDAS, GLDAS, FLDAS, MSFC, NU-WRF, 
ICBA, …)  

LIS outputs being produced in many different 
formats (grib, NetCDF, binary), different 
resolutions, map projections, modes (tile, grid, 
ensembles) 

The typical next step is to compare the model 
outputs to reference datasets for evaluation 

LVT was originally designed to bridge this gap 
- by having a framework that allows the 
comparison of LIS output against other 
datasets

SCAN
MODIS

Land Model 

Analysis

Observati
ons

LVT

 A range of evaluation metrics
Land model diagnostics
Data assimilation and 

uncertainty diagnostics
Spatial scale analysis

Support for non-LIS data

Includes support for a range of in-situ, remote sensing and model/
renalysis products

Supports the analysis of outputs from various LIS subsystems (LIS-DA, 
LIS-OPT/UE)

Includes the capability to generate end-user oriented hydrological 
products (drought/flood percentiles, indicators)

Very LIS-reliant, non-LIS datasets require pre-processing to make them 
“LIS-like” 



 LVT - current structure

SCAN
MODIS

Land Model 

Analysis

Observati
ons

LVT

 A range of evaluation metrics
Land model diagnostics
Data assimilation and 

uncertainty diagnostics
Spatial scale analysis

Support for non-LIS data

SNOTEL

SCAN

MODIS

Land dat
a 

streams

LIS 
output

Redesigned to handle any 
two land relevant datasets 
(need not be a LIS output) 

In addition to all other existing 
capabilities, some initial 
benchmarking capabilities 
have been developed 

The supported datasets in 
LVT can be used to develop 
benchmarks using simple 
(regression) to more complex 
(ANN-ish) methods



 General capabilities

 Reconciles the differences in spatial and temporal resolutions 
between the two datastreams being compared, by bringing them to a 
common (user specified space and time domain)

Datastream 1

Datastream 2

Analysis domain, resolution 
(user specified)



 General capabilities
Emphasis on supporting datasets natively, as much as possible - Users can download the data by themselves and employ them in 
LVT 

E.g. ARM-CART (NetCDF), AGRMET (Grib), SCAN in-situ (ASCII) … 

A reader/processor needs to be built for each dataset 

 Many options for masking/stratification of metrics 

Data count based mask 

External static mask  

External time varying mask 

Variable-based stratification (e.g. day-night stratification using SWdown) 

External data based stratification (e.g. landcover, soils, elevation)

…

RMSE for Evergreen Needleleaf Forest

RMSE for Evergreen Broadleaf Forest

RMSE for Deciduous Needleleaf Forest

RMSE for Deciduous Broadleaf Forest



 General capabilities
 Analysis outputs provided in both gridded (NetCDF/binary) and ASCII formats 

Time-lagged computations 

Datastream 1

Datastream 2

Lag=0Lag=1Lag=2

 Supports water-year (flexible year specification) 

User specifies the starting month of the year specification 

 Smoothing support (limited) 

Uses a moving window average for the computation of analysis metrics 

 Computes confidence intervals (currently CIs in the spatial domain is supported; It will be 
extended to include temporal CIs)

d=1 d=2 d=3 d=4 d=5



 General capabilities
 Spatial averaging modes for analysis metric can be computed on a pixel-by-pixel basis or at basin averaged basis 

Pixel-by-pixel - each pixel in datastream 1 is compared to a pixel in datastream 2 

Basin-averaged - datastream 1 and 2 values are averaged to the basin scale and then compared using the analysis metric 

 Computes derived variables  

e.g. Bowen ratio can be computed through LVT (and used for analysis) if both Qle and Qh are present, A column 
averaged, weighted root zone soil moisture if individual soil moisture layer values are present 

Energy/Water/Evaporation balance values  

 Analysis metric computations are performed  

Across the entire analysis period 

At specified temporal intervals 

Average seasonal/diurnal cycles (if specified by the user) 

 Supports outputs from all LIS computational subsystems  

Data assimilation diagnostics from the LIS-DA output

Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $

26th Conference on Hydrology, 92nd American Meteorological Society Annual Meeting, January 22-26, 2012, New Orleans, LA."
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 Software architecture

3-layer architecture 

Specified as an object oriented 
framework with plugins defined 
for 

Analysis metrics 

Datastreams 

Training algorithms 

Analysis instances are enabled 
by a config file (no external 
scripting required)
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Time 
Management 

Logging and
Diagnostic Configuration Geospatial

Transformation
I/O 

Management

Analysis Metrics Datastreams Training 
Algorithms

Accuracy measures (RMSE, Bias, Correlation)
Ensemble measures (Likelihood)

Uncertainty measures (Importance)
Information theory measures (Entropy, 

complexity)
Scale decomposition (Wavelet analysis)

........

Accuracy measures (RMSE, Bias, Correlation)
Ensemble measures (Likelihood)

Uncertainty measures (Importance)
Information theory measures (Entropy, 

complexity)
Scale decomposition (Wavelet analysis)

........

Accuracy measures (RMSE, Bias, Correlation)
Ensemble measures (Likelihood)

Uncertainty measures (Importance)
Information theory measures (Entropy, 

complexity)
Scale decomposition (Wavelet analysis)

........

FLUXNET fluxes
ARM fluxes, soil moisture, temperature

SNOTEL snow water equivalent
AMSR-E soil moisture

MODIS snow cover
ISCCP surface temperature 

USGS streamflow
 SURFRAD radiation

CPC precipitation analysis
........

FLUXNET fluxes
ARM fluxes, soil moisture, temperature

SNOTEL snow water equivalent
AMSR-E soil moisture

MODIS snow cover
ISCCP surface temperature 

USGS streamflow
 SURFRAD radiation

CPC precipitation analysis
........

LIS output
FLUXNET fluxes

ARM fluxes, soil moisture, temperature
SNOTEL snow water equivalent

AMSR-E soil moisture
MODIS snow cover

NLDAS model outputs
USGS streamflow

 SURFRAD radiation
CPC precipitation analysis

........

One-variable regression
Two-variable regression

ANNs
...

One-variable regression
Two-variable regression

ANNs
...



 Supported data streams
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MODIS snow cover
ISCCP surface temperature 
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 SURFRAD radiation

CPC precipitation analysis
........

FLUXNET fluxes
ARM fluxes, soil moisture, temperature

SNOTEL snow water equivalent
AMSR-E soil moisture

MODIS snow cover
ISCCP surface temperature 

USGS streamflow
 SURFRAD radiation

CPC precipitation analysis
........

LIS output
FLUXNET fluxes

ARM fluxes, soil moisture, temperature
SNOTEL snow water equivalent

AMSR-E soil moisture
MODIS snow cover

NLDAS model outputs
USGS streamflow

 SURFRAD radiation
CPC precipitation analysis

........

One-variable regression
Two-variable regression

ANNs
...

One-variable regression
Two-variable regression

ANNs
...

Model/Reanalysis 
AGRMET 
GLDAS2 
NLDAS2 
LIS outputs 
MERRA2 
SNODAS 
CMC 
GL6 JULES 
ERA interim Land 
MERRA Land 
COAMPS 
….

Satellite/Remote Sensing 
ALEXI 
AMSR-E SWE/snowdepth 
LPRM AMSR-E soil 
moisture 
ESA CCI soil moisture 
GIMMS NDVI 
GlobSnow SWE 
GRACE TWS 
ISCCP LST 
MOD10A1 snow cover 
MOD16A2 ET 
MODIS LST 
SMOPS soil moisture 
SMOS L1 Tb 
SMOS L2 soil moisture 
UW ET 
…

In-situ 
Ameriflux fluxes 
ARM fluxes, soil moisture, soil temperature 
ARS soil moisture 
CEOP fluxes, soil moisture, soil 
temperature 
CPC precipitation 
FLUXNET fluxes 
FMI SWE  
GHCN snow depth 
GLERL lake fluxes, temperature 
ISMN soil moisture 
NASMD soil moisture 
PBOH2O soil moisture, snow depth 
SCAN soil moisture 
SMOSREX soil moisture 
SNODEP snow depth metobs 
SNOTEL SWE 
SURFRAD radiation 
USGS streamflow 
USGS groundwater  
..



 Supported analysis metrics
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Time 
Management 

Logging and
Diagnostic Configuration Geospatial

Transformation
I/O 

Management

Analysis Metrics Datastreams Training 
Algorithms

Accuracy measures (RMSE, Bias, Correlation)
Ensemble measures (Likelihood)

Uncertainty measures (Importance)
Information theory measures (Entropy, 

complexity)
Scale decomposition (Wavelet analysis)

........

Accuracy measures (RMSE, Bias, Correlation)
Ensemble measures (Likelihood)

Uncertainty measures (Importance)
Information theory measures (Entropy, 

complexity)
Scale decomposition (Wavelet analysis)

........

Accuracy measures (RMSE, Bias, Correlation)
Ensemble measures (Likelihood)

Uncertainty measures (Importance)
Information theory measures (Entropy, 

complexity)
Scale decomposition (Wavelet analysis)

........

FLUXNET fluxes
ARM fluxes, soil moisture, temperature

SNOTEL snow water equivalent
AMSR-E soil moisture

MODIS snow cover
ISCCP surface temperature 

USGS streamflow
 SURFRAD radiation

CPC precipitation analysis
........

FLUXNET fluxes
ARM fluxes, soil moisture, temperature

SNOTEL snow water equivalent
AMSR-E soil moisture

MODIS snow cover
ISCCP surface temperature 

USGS streamflow
 SURFRAD radiation

CPC precipitation analysis
........

LIS output
FLUXNET fluxes

ARM fluxes, soil moisture, temperature
SNOTEL snow water equivalent

AMSR-E soil moisture
MODIS snow cover

NLDAS model outputs
USGS streamflow

 SURFRAD radiation
CPC precipitation analysis

........

One-variable regression
Two-variable regression

ANNs
...

One-variable regression
Two-variable regression

ANNs
...

Metric class Examples

Diagnostics Mean, Standard deviation, Anomaly, Tendency, Min, Max, 
Sum, Maxtime, Mintime

Accuracy 
ACC, Bias, CSI, ETS, FAR, FBIAS, MAE, NSE, PODY, 

PODN, POFD, Correlation, Anomaly Correlation, Tendency 
Correlation, unbiased RMSE

Indicators SPI, SRI, SSWI, SSGI, percentiles, probabilistic percentiles

Ensemble Mean, Likelihood, Spread, Cross correlation, ME

Information theory Metric entropy, Information gain, Effective complexity, 
Fluctuation complexity

Scale decomposition Discrete wavelet transforms

Spatial similarity Hausdorff norm



 Examples of indicators
LVT Core

C
or

e 
St

ru
ct

ur
e 

an
d

Fe
at

ur
es

Ab
st

ra
ct

io
ns

 U
se

 C
as

eI
m

pl
em

en
ta

tio
ns

Time 
Management 
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Accuracy measures (RMSE, Bias, Correlation)
Ensemble measures (Likelihood)

Uncertainty measures (Importance)
Information theory measures (Entropy, 

complexity)
Scale decomposition (Wavelet analysis)

........

Accuracy measures (RMSE, Bias, Correlation)
Ensemble measures (Likelihood)

Uncertainty measures (Importance)
Information theory measures (Entropy, 

complexity)
Scale decomposition (Wavelet analysis)

........

Accuracy measures (RMSE, Bias, Correlation)
Ensemble measures (Likelihood)

Uncertainty measures (Importance)
Information theory measures (Entropy, 

complexity)
Scale decomposition (Wavelet analysis)

........

FLUXNET fluxes
ARM fluxes, soil moisture, temperature

SNOTEL snow water equivalent
AMSR-E soil moisture

MODIS snow cover
ISCCP surface temperature 

USGS streamflow
 SURFRAD radiation

CPC precipitation analysis
........

FLUXNET fluxes
ARM fluxes, soil moisture, temperature

SNOTEL snow water equivalent
AMSR-E soil moisture

MODIS snow cover
ISCCP surface temperature 

USGS streamflow
 SURFRAD radiation

CPC precipitation analysis
........

LIS output
FLUXNET fluxes

ARM fluxes, soil moisture, temperature
SNOTEL snow water equivalent

AMSR-E soil moisture
MODIS snow cover

NLDAS model outputs
USGS streamflow

 SURFRAD radiation
CPC precipitation analysis

........

One-variable regression
Two-variable regression

ANNs
...

One-variable regression
Two-variable regression

ANNs
...

Root zone soil moisture based drought 
percentiles generated by LVT from a LIS 

simulation
U.S. Drought Monitor estimate

July 30, 2002

Jan 3, 2006

Sept 27, 2011

A suite of common, 
normalized indicators has 
been developed 

SPI, SRI, SSWI, SSGI, 
percentiles 

These indicators are 
computed as deviations 
from long term (fitted/
computed) distributions



 Examples of ensemble analysis
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Information theory measures (Entropy, 

complexity)
Scale decomposition (Wavelet analysis)

........

Accuracy measures (RMSE, Bias, Correlation)
Ensemble measures (Likelihood)

Uncertainty measures (Importance)
Information theory measures (Entropy, 

complexity)
Scale decomposition (Wavelet analysis)

........

Accuracy measures (RMSE, Bias, Correlation)
Ensemble measures (Likelihood)

Uncertainty measures (Importance)
Information theory measures (Entropy, 

complexity)
Scale decomposition (Wavelet analysis)

........

FLUXNET fluxes
ARM fluxes, soil moisture, temperature

SNOTEL snow water equivalent
AMSR-E soil moisture

MODIS snow cover
ISCCP surface temperature 

USGS streamflow
 SURFRAD radiation

CPC precipitation analysis
........

FLUXNET fluxes
ARM fluxes, soil moisture, temperature

SNOTEL snow water equivalent
AMSR-E soil moisture

MODIS snow cover
ISCCP surface temperature 

USGS streamflow
 SURFRAD radiation

CPC precipitation analysis
........

LIS output
FLUXNET fluxes

ARM fluxes, soil moisture, temperature
SNOTEL snow water equivalent

AMSR-E soil moisture
MODIS snow cover

NLDAS model outputs
USGS streamflow

 SURFRAD radiation
CPC precipitation analysis

........

One-variable regression
Two-variable regression

ANNs
...

One-variable regression
Two-variable regression

ANNs
...

Uncertainty importance: An assessment of the relative contribution of each parameter to the 
ensemble spread (cross correlation between the simulated variable and the parameter, across the 
ensemble) 

Can be used to guide parameter optimization/uncertainty estimation studies

Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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We gratefully acknowledge the financial support from the US Air Force Weather Agency 
(AFWA) and the NASA Earth Science Technology Office (ESTO)."

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 32 64 128 256 512 1024

P
er

ce
nt

ag
e 

co
nt

rib
ut

io
n

Spatial Scale (KM)

Kumar, S.V., C.D. Peters-Lidard, J.A. Santanello, K.W. Harrison, Yuqiong Liu and Michael Shaw (2012), “Land surface Verification Toolkit (LVT): A generalized framework for land surface model evaluation, submitted to Geosci. Model. Dev."

LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $

26th Conference on Hydrology, 92nd American Meteorological Society Annual Meeting, January 22-26, 2012, New Orleans, LA."
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Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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Kumar, S.V., C.D. Peters-Lidard, J.A. Santanello, K.W. Harrison, Yuqiong Liu and Michael Shaw (2012), “Land surface Verification Toolkit (LVT): A generalized framework for land surface model evaluation, submitted to Geosci. Model. Dev."

LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $

26th Conference on Hydrology, 92nd American Meteorological Society Annual Meeting, January 22-26, 2012, New Orleans, LA."
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generated by a two dimensional discrete Haar wavelet analysis.
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Fig. 8. Percentage contribution to the total improvement in snow
covered area POD at different spatial scales, generated by a two
dimensional discrete Haar wavelet analysis.

an example of scale-decomposition evaluation of snow cover
simulations from the LSMs using LVT.
The intensity-scale approach of Casati et al. (2004), orig-

inally developed for the spatial verification of precipitation
forecasts, is used to perform a scale decomposition analy-
sis. The technique employs a two dimensional discrete Haar
wavelet transform that decomposes a given field into the
sum of orthogonal components at different spatial scales. The
mean squared error (MSE) of the decomposed components at
each spatial scale is used to quantify the scale decomposition
effects.
Using the domain configuration at 1 km spatial resolution

over Afghanistan (used in Sect. 5.1), two model simulations
are conducted using Noah LSM (version 2.7.1); one that em-
ploys a terrain based correction of shortwave radiation input
to the LSM and one that does not include such adjustments.
The terrain-based corrections adjust the incoming shortwave
radiation based on terrain slope and aspect, and these changes
in turn impact the evolution of snow over these terrain. The
improvements in the snow cover simulation as a result of
the terrain-based correction is computed as the difference in
POD fields from the two simulations, generated by compar-
ing against the MOD10A1 (version 4) fractional snow cover
product. The scale-decomposition approach is then applied
to this difference field, to quantify how the improvements in
snow cover estimates at 1 km spatial resolution translate to
coarser spatial scales.
Figure 8 shows the result of scale decomposition of the to-

tal improvement field for POD using the two dimensional
discrete Haar wavelet transform. The algorithm computes
successive decompositions of the original field by powers of
2. The percentage contribution to the total improvement at
each coarse spatial scale is shown in Fig. 8. The results indi-
cate that most of the improvements in POD are obtained at
fine spatial scales and the contribution of the scale decreases
with increase in spatial resolution. At scales coarser than
16 km, the percentage contribution drops below 10%. Simi-
lar analysis of scale effects can be performed on other metrics
and variables of interest. This example demonstrates the use

of LVT for another MDF experiment where the MODIS frac-
tional snow cover data is used to assess the applicability of
model formulations at different spatial scales.

5.7 Spatial similarity measures

With the increased availability of spatially distributed
datasets from satellites and remote-sensing platforms, there
is a need for techniques and metrics that evaluate models
and observations based on the their spatial patterns, in addi-
tion to the one-to-one correspondence comparisons that are
typically used. The incorporation of spatial pattern compar-
isons will aid in further improving the reliability of LSMs
for hydrological applications (Bloschl and Sivapalan, 1995;
Grayson and Bloschl, 2000). A review of spatial similarity
methods in hydrology is provided in Wealands et al. (2005),
which includes techniques based on statistical identification
as well as image processing techniques. In this section, an ex-
ample of using a similarity metric through LVT to compare
snow cover patterns from two different LSMs is presented.
Snow cover estimates using two LSMs, Noah (version 3.2)

and CLM (version 2; Dai et al., 2003), forced with GDAS and
CMAP datasets, are generated over a 100⇥ 100 region near
the Southern Great Plains in the US at 1 km spatial resolution
for a time period of 1 November 2008 to 1 June 2009. The
LSMs have different representations of snow processes, with
Noah employing a simple single snow layer scheme. CLM
includes a more complex five layer snow scheme with param-
eterizations for temporally varying snow albedo, as a func-
tion of snow cover and snow age. Both LSMs simulate tem-
porally varying snow density with evolution of patchy snow
cover. The model simulations are evaluated against the frac-
tional snow cover observations from MODIS (MOD10A1
version 4) using the “Hausdorff distance” similarity metric.
Hausdorff distance (HD) measures the similarity of points

in two finite sets and is not designed to find one-to-one cor-
respondence between points in each set. It is expressed as the
maximum distance of a set to the nearest point in the other
set:

h(M,O) = max
m2M

{min
o2O

{||m � o||}}, (3)

where h(M,O) is the HD value, m and o are points of sets
M (representing model) and O (representing observations),
respectively. ||m � o|| is the norm of the points in the model
and observation spaces and can be computed as the Euclidean
distance between m and o.
Figure 9 shows a time series comparison of the cumulative

HD measure from Noah and CLM snow cover simulations
for the winter season of 1 November 2008 to 1 June 2009.
More temporal variability in HD values is observed during
the snow evolution and ablation periods and it drops during
the peak snow season, suggested by the flattening of the cu-
mulative HD curves. This indicates that there is more con-
sistent agreement in the observational and model simulated

www.geosci-model-dev.net/5/869/2012/ Geosci. Model Dev., 5, 869–886, 2012

Fig. 4. Probability of Detection (left column) and False Alarm Ratio (right column) of the model simulated

snow cover fields compared against the fractional MODIS snow cover product (MOD10A1).
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Probability of detection of snow cover (1 km)

Discrete wavelet transform
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of models is similar if some statistics of residuals are
similar. However, the differences between models
should not be viewed only in terms of the model
accuracy. The accuracy reflects only a specific instance
of model performance with respect to a specific data set
used for testing and/or calibration. Once calibrated, soil
water flow models are usually used in Monte Carlo-type
simulations with multiple scenarios of boundary condi-
tions, initial conditions, and possibly soil and plant
properties. Therefore, other performance measures
should be sought that reveal the differences between
models under scenarios that have not been observed.

The information theory was successfully used for the
model discrimination purpose in cases when the main
difference between models was the difference in the
number of parameters and parameters were qualitatively
similar, like regression coefficients or hydraulic con-
ductivities of different geological bodies in groundwater
transport modeling. Akaike criterion (Akaike, 1973) and
its versions (Bozdogan, 1987; Hurvich and Tsai, 1989)
discriminate models by computing the relative entropy,
or Kullback–Leibler “distance,” which represents the
information loss when a model is used to approximate
data. Those criteria introduce information theory
measures to gauge a model performance with respect
to a given dataset. But they do not reveal the differences
between model behavior with input scenarios different
from the ones in observations.

Usually the differences between models of flow and
transport in soils are discussed in terms of model
structural complexity and detail. The model complexity
can be evaluated in terms of the number of processes
being considered explicitly, process descriptions, spatial

and temporal discretization/scale, number of parameters,
and speed of computations (Neuman et al., 2003). The
numbers characterizing those model features are hardly
compatible, and their relative significance is unknown.
For example, the total number of parameters is not a
comprehensive index of model complexity, because the
sensitivity of model outputs to some parameters can be
relatively low, and may depend on the scenario.

Unlike model structures, model outputs are compat-
ible, because soil water flow models under comparison
should generate time series of water fluxes or water
contents for the same depths. Given one cannot discrimi-
nate models based on complexity of models structures, is
it possible to discriminate models based on the complexi-
ty of model output? Some measures of time series com-
plexity are needed to do that. The information theory has
been used to propose several such measures (Wack-
erbauer et al., 1994). Lange (1999a,b) suggested using
information-related measures to discriminate between
measured time series. He made the distinction between
the information content, or the randomness, of data on
one hand, and their complexity on the other. By the latter
he meant a measure which vanishes or is very small both
for constant or periodic sequences and for completely
random data, as both types are easy to describe. The
complexity measures should show high values for time
series not amenable to an easy description involving only
a few parameters. This (admittedly intuitive) distinction
is illustrated in Fig. 1. Complexity and information
content of daily runoff and precipitation are presented in
Fig. 2 for several catchments in Germany and New
Hampshire (Lange, 1999a,b). Runoff from the natural
catchments operates at high complexities and

Fig. 1. Complexity and randomness for the sine function, the highly structured Bernoulli process with the probability of repetition 83%, and the
random process with the uniform distribution (Wolf, 1999).

254 Y. Pachepsky et al. / Geoderma 134 (2006) 253–266

from Pachepsky et al. (2006) 



 Benchmarking

LVT provides two capabilities related to benchmarking:  

Develop a benchmark dataset by training any two of the supported 
datasets  

Compare the model runs to the benchmark dataset 

Training algorithms available 

One-variable regression 

Two-variable regression 

ANN (coming soon..)



 Ongoing work

Currently LVT works only in a serial mode. Multi-processor 
capabilities are being added.   

Spectral/cross-spectral analysis (along Weedon et al., JHM 2015)  

Expand the suite of indicators (e.g. multi-variable based)


